Poisson transforms adapted to BGG-complexes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Bgg Complexes for Automorphic Bundles

We generalize the construction of dual BGG complexes in Faltings–Chai and Mokrane–Tilouine–Polo (from the case of Siegel modular varieties) to all smooth integral models of PEL-type Shimura varieties.

متن کامل

Hierarchies of Simplicial Complexes via the Bgg-correspondence

Via the BGG-correspondence a simplicial complex ∆ on [n] is transformed into a complex of coherent sheaves L̃(∆) on the projective space P. In general we compute the support of each of its cohomology sheaves. When the Alexander dual ∆ is Cohen-Macaulay there is only one such non-zero cohomology sheaf. By considering when this sheaf can be an a’th syzygy sheaf in a locally free resolution, we get...

متن کامل

Single-pass adapted training with all-pass transforms

In recent work, the all-pass transform (APT) was proposed as the basis of a speaker adaptation scheme intended for use with a large vocabulary speech recognition system. It was shown that APT-based adaptation reduces to a linear transformation of cepstral means, much like the better known maximum likelihood linear regression (MLLR), but is specified by far fewer free parameters. Due to its line...

متن کامل

Axiomatic Framework for the Bgg

We present a general setup in which one can define an algebra with a regular triangular decomposition. This setup incorporates several important examples in representation theory, including semisimple, Kac-Moody, contragredient, and Borcherds Lie algebras, the Virasoro algebra, and quantum groups. In all these cases, the “Cartan” subalgebra is a commutative cocommutative Hopf algebra; we show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2019

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2019.02.005